Quantum Information

Marco Chiani

University of Bologna, Italy

Dept. of Electrical, Electronic, and Information Engineering "Guglielmo Marconi"

Aperitivo con AI: there is plenty of WORK at the bottom! Bologna, February 17, 2021

- Introduction
- Quantum Mathematical Tools
- Quantum algorithms
- Secure quantum communication

- Quantum sensing: use of quantum mechanical phenomena such as entanglement to yield higher statistical precision than purely classical approaches
- Quantum computation: algorithms using quantum mechanical phenomena such as superposition and entanglement
- Quantum communications:
 - to secure communication
 - to move quantum information
 - to improve classical communication

Quantum bits - qubits

 \dots "state" means whatever information is required about a specific system, in addition to physical laws, in order to predict its behavior in future experiments[†]

- \bullet Classical (macroscopic) example: switch "open" or "closed" \rightarrow state is one classical bit
- Quantum example: spin of an electron. Measured in any direction (Stern-Gerlach), two possible results, "same (+1)" or "opposite (-1)", with some probabilities.

To predict its behavior we need a two-dimensional unit norm complex \mathbb{C}^2 vector $[\alpha, \beta]^T$ (referred to a specific direction, let's say along z)

[†]Fano, Ugo. "Description of states in quantum mechanics by density matrix and operator techniques." Reviews of Modern Physics (1957)

 \Rightarrow Measurements are not gentle: after we measure, the state becomes what has been observed (collapses).

 \Rightarrow If we know the spin along z, we know nothing about the spin along x.

The state allows to calculate the probabilities for spin measurements in any possible direction, as well as the behavior in future experiments.

P(measuring "up") =
$$|\alpha|^2$$

 $\alpha, \beta \in \mathbb{C}, \quad |\alpha|^2 + |\beta|^2 = 1$
P(measuring "down") = $|\beta|^2$

Physical support	Name	Information support	0	$ 1\rangle$	
	Polarization encoding	Polarization of light	Horizontal	Vertical	
Photon	Number of photons	Fock state	Vacuum	Single photon state	
	Time-bin encoding	Time of arrival	Early	Late	
Coherent state of light	Squeezed light	Quadrature	Amplitude-squeezed state	Phase-squeezed state	
	Electron Spin	Spin	Up	Down	
Electrons	Electron number	Charge	No electron	One electron	
Nucleus	Nuclear spin addressed through NMR	Spin	Up	Down	
Optical lattices	Atomic spin	Spin	Up	Down	
	Superconducting charge qubit	Charge	Uncharged superconducting island $(Q = 0)$	Charged superconducting island $(Q = 2e, one extra Cooper pair)$	
Josephson junction	Superconducting flux qubit	Current	Clockwise current	Counterclockwise current	
	Superconducting phase qubit	Energy	Ground state	First excited state	
Singly charged quantum dot pair	ingly charged quantum dot pair Electron localization		Electron on left dot	Electron on right dot	
Quantum dot	Dot spin	Spin	Down	Up	
van der Waals heterostructure	Electron localization	Charge	Electron on bottom sheet	Electron on top sheet	

from Wikipedia

Quantum computing

Quantum computing: modifying quantum states

Quantum Mechanics: it is possible to act on physical systems to change states according to linear transformations U s.t. $U^{\dagger}U = I$ (unitary transformations)

• Single qubit gate example: $\boldsymbol{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$|\psi\rangle - \mathbf{X} - \mathbf{X} |\psi\rangle$$

$$X(\alpha |0\rangle + \beta |1\rangle) = \alpha |1\rangle + \beta |0\rangle$$
 "bit flip"

• Two-qubits gate example: controlled-not, CNOT $(a, b \in \{0, 1\})$

It is possible to realize an arbitrary \boldsymbol{U} by using single-qubit and CNOT elementary gates.

The state of *n* qubits is a complex vector with dimension $N = 2^n$.

Example
$$n = 3$$

 $\alpha_0 |000\rangle + \alpha_1 |001\rangle + \dots + \alpha_7 |111\rangle$

Exponential compression:

40 qubits
$$\Rightarrow 2^{40} \simeq 10^{12}$$

However, when we measure we see just one configuration, with prob. $|\alpha_j|^2$.

Classical vs. Quantum

Exploiting superposition: input $\sum_{x} |x\rangle |0\rangle \Rightarrow$ output $\sum_{x} |x\rangle |f(x)\rangle$

- Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms (Shor's algorithm)
- Quantum search, space of N elements. Classical search operations: O(N)Quantum search $O(\sqrt{N})$ (Grover's algorithm)

Polynomial-time Algorithm for Prime Factorization on a Quantum Computer (Shor, 1994) Ingredients:

- Factorization by order-finding
- Period-finding by Quantum Fourier Transform

- The integer N as a factor in common with x 1 if $x^2 \mod N = 1$ and $x \mod N \neq \pm 1$
- To find x: generate random y, then find the period of $y^a \mod N$:

 $y^0 \mod N, y^1 \mod N, \dots$

 $\mathsf{Factoring} \iff \mathsf{period}\mathsf{-finding}$

Tools from signal analysis: Fourier

(Warning: imprecise statements, just to give the idea)

A function with period P in time has frequency components at frequencies k/P.

Tools from signal analysis: Fourier

(Warning: imprecise, just to give the idea)

Quantum order-finding, f(a) = f(a + P)

(Warning: imprecise, just to give the idea)

Generate the superposition $\sum_{x} |x\rangle$ by QFT of a Dirac's delta $U_f =$ unitary, computes f(a) in a register \Rightarrow output $\sum_{x} |x\rangle |f(x)\rangle$ Measure the second register. For example it turns out f(x) = 12Left in the first reg: superposition of all $|x\rangle$ with x giving $f(x) = 12 \Rightarrow$ periodic Then, Quantum Fourier Transform: the measured frequency is some random multiple of 1/P

By repeating a couple of times, P can be derived with high probability

Quantum machine learning

The state of *n* qubits is a complex vector with dimension $N = 2^n$

$$oldsymbol{x} \in \mathbb{C}^N \iff |x
angle$$
 of $\log_2 N$ qubits

	Classical	Quantum
FFT	$O(N \log N)$	$O((\log N)^2)$
Eigenvect, eigenval of sparse matrices	$O(N^2)$	$O((\log N)^2)$
Matrix inversion	$O(N^3)$	$O((\log N)^3)$

Table: Number of operations for basic linear algebra subroutines

• ...

- Quantum deep learning
- Quantum convolutional neural networks
- Quantum principal component analysis
- TensorFlow Quantum
- Quantum neural networks

• ...

Company	Cloud Access	Technology	Quantum Computer	qubits	SDK/Lang.	
	Yes		IBM Q Montreal	27	QisKit/Python	
IBM		Superconducting	IBM Q Manhattan	65	QisKit/Python	
			IBM Q Santiago	5	QisKit/Python	
Rigetti	Through AWS	Superconducting	Aspen-8	32	Amazon Braket/Python	
D-Wave	Through AWS	Superconducting, Quant. Annealer*	D-Wave 2000Q	2048*	Amazon Braket/Python	
IonQ	Through AWS	Trapped Ion	-	79	Amazon Braket/Python	
Google	No	Superconducting	Bristlecone	72	Cirq/Python	
		Superconducting	Sycamore	53	Cirq/Python	
Honeywell	On-demand	Trapped Ion	System Model HØ	6	-	
Xanadu	Yes	Photonic Quan- tum Computing	-	12	Strawberry Fields/Python	
OriginQ	Yes	Superconducting	Wu Yuan	6	QPanda/C++	

Cryptosystem	Category	Key Size	Security Parameter	Quantum Algorithm Expected to Defeat Cryptosystem	# Logical Qubits Required	# Physical Qubits Required ^a	Time Required to Break System ^b	Quantum-Resilient Replacement Strategies
AES-GCM ^c	Symmetric encryption	128 192 256	128 192 256	Grover's algorithm	2,953 4,449 6,681	$\begin{array}{l} 4.61 \times 10^{6} \\ 1.68 \times 10^{7} \\ 3.36 \times 10^{7} \end{array}$	2.61 × 10 ¹² years 1.97 × 10 ²² years 2.29 × 10 ³² years	
RSA ^d	Asymmetric encryption	1024 2048 4096	80 112 128	Shor's algorithm	2,050 4,098 8,194	$\begin{array}{l} 8.05\times 10^6\\ 8.56\times 10^6\\ 1.12\times 10^7\end{array}$	3.58 hours 28.63 hours 229 hours	Move to NIST- selected PQC algorithm when available
ECC Discrete-log problem ^{e.g}	Asymmetric encryption	256 384 521	128 192 256	Shor's algorithm	2,330 3,484 4,719	$\begin{array}{c} 8.56 \times 10^6 \\ 9.05 \times 10^6 \\ 1.13 \times 10^6 \end{array}$	10.5 hours 37.67 hours 55 hours	Move to NIST- selected PQC algorithm when available
SHA256 ^h	Bitcoin mining	N/A	72	Grover's Algorithm	2,403	2.23×10^{6}	1.8×10^4 years	
PBKDF2 with 10,000 iterations ⁱ	Password hashing	N/A	66	Grover's algorithm	2,403	2.23 × 10 ⁶	2.3×10^7 years	Move away from password-based authentication

TABLE 4.1 Literature-Reported Estimates of Quantum Resilience for Current Cryptosystems, under Various Assumptions of Error Rates and Error-Correcting Codes

Quantum Computing: Progress and Prospects. Washington, DC, USA: Nat. Acad. Press, 2019.

Entanglement-based QKD between two ground stations separated by 1,120 km

Yin, Juan, et al. "Entanglement-based secure quantum cryptography over 1,120 kilometres." Nature (2020).

Quantum communications: Quantum Internet

- To move and process quantum information
- Most important function: generate long distance quantum entanglement
- Applications:

generation of multiparty shared secrets blind quantum computing secure private-bid auctions distributed quantum computing improved sensing quantum-enhanced measurement networks

H. J. Kimble, "The quantum internet," Nature, 2008.

Wehner, Elkouss, Hanson, "Quantum internet: A vision for the road ahead," Science, 2018.

Babar, et al. "Duality of Quantum and Classical Error Correction Codes: Design Princip. and Examp", IEEE Comm. Surv. Tutor. 2019.

Mihir, et al. "Routing entanglement in the quantum internet." npj Quantum Information 2019.