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REDUCTION OF CALCULATIONS TO SUMS

The calculation of any function can be reduced to elementary operations   x 
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In turn, the elementary operations can be reduced to sums

That is, given an algorithm able to provide the sum of two numbers, the other

elementary operations are easily accomplished, and all other calculations ensue.



NUMBER REPRESENTATION

A number N can be represented as the sum of powers of a given base b,

each multiplied by a coefficient with values in the range 0, …, b-1. For

example, N = nineteen can be written as:

• Decimal representation (figures 0 … 9): N = 1 x 101 + 9 x 100 = 19.

• Septimal representation (figures 0 … 6): N = 2 x 71 + 5 x 70 = 25.

• Binary representation (figures 0, 1):

N = 1 x 24 + 0 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 10011.



ADDITION OF TWO SINGLE-BIT NUMBERS

Each of the two symbols of the binary system is called bit (binary digit).

Computers use the binary representation. Therefore, it is necessary to

implement the sum of two binary numbers.

The implementation of the above is called half adder (S = sum, C = carry). A

suitable elaboration on the half adder provides the full adder.



LOGIC VALUES

Computers do not use numbers, but voltage levels (high voltage or low voltage).

These levels are not related to numbers: they may be viewed as two logically-

opposite conditions; for them, different equivalent representations are possible:

• High voltage – Low voltage.

• Full tank – Empty tank.

• True proposition – False proposition.

• Set A – Complement of A.

• Black – White.

• Symbol “1” – Symbol “0” (not numbers!).



EXAMPLE: “NOT” OPERATOR (INVERTER)

The circuit represents a CMOS inverter, that performs the logic operation NOT. 

The symbol of the NOT operator and the corresponding truth table are shown.



EXAMPLE: “NAND” OPERATOR

The circuit represents a CMOS implementation of the NAND operator. The symbol 

of the NAND operator and the corresponding truth table are shown.



EXAMPLE: “NOR” OPERATOR

The circuit represents a CMOS implementation of the NOR operator. The symbol 

of the NOR operator and the corresponding truth table are shown.



LOGIC FUNCTIONS – CANONICAL FORMS – UNIVERSAL OPERATORS

Logic functions F ( A, B, C, … , Z ) are combinations of the logic variables A, B,

C, … , Z.

• Any logic function can be expressed as a sum of products involving the true or

negated form of all variables; alternatively,

• Any logic function can be expressed as a product of sums involving the true or

negated form of all variables.

Thus, the NOT, AND, and OR operators suffice to build-up any logic function. Also,

• Suitable combinations of NOR (NAND) operators provide one or the other of

the NOT, AND, OR operators.

Thus, the NOR (NAND) operator suffices to build-up any logic function, including

those necessary to implement the full adder.



POLYNOMIAL COMPLEXITY OF A CALCULATION

Problem 1: The interest rate on the 15-year loans is changed. A bank must

recalculate, for each monthly installment of n loans using the French amortization,

the part related to the new interest.

The number of calculations necessary is of the order of K = 15 x 12 x n.

If n = 1,000,000, then K = 180,000,000.

If the size of a problem is n, and the number of calculations necessary to solve it is

some function of n that has a polynomial form (like in this case), the complexity of

the problem is of the polynomial (P) type.



NON-POLYNOMIAL COMPLEXITY OF A CALCULATION (A)

Problem 2 (the Travelling Salesman Problem): given a list of n cities and the

distances between each pair of cities, find the shortest route that visits each city

exactly once and returns to the city whence the route started.

The solution is conceptually easy:

• Let K be the total number of routes.

• Calculate the length of routes 1 and 2, and keep the shorter one.

• Then, calculate the length of route 3, compare it with the one selected at the

previous step, and keep the shorter one.

• Continue down to route K.



NON-POLYNOMIAL COMPLEXITY OF A CALCULATION (B)

Let the number of cities be n = 26. It follows K = 25 x 24 x 23 … 3 x 2 x 1  1025.

If the computer has the size of an atom, and the time necessary to calculate the

length of a route equals the time taken by light to cross the atom, the time

necessary to calculate all routes is about 116 days.

In this case the size of the problem is exp(n), whence the number of calculations

necessary to solve it depends on n in a non-polynomial form. The complexity of

this problem is of the non-polynomial (NP) type.

This and other examples (like, e.g., weather forecast) show that a classical

computer, that performs the calculations one by one, may not be suited for some

types of problems. The possibility of performing calculations in parallel would be

of help.



EXAMPLE OF PARALLELISM

Problem 3 (extracting global properties): let x
1
= 0 and x

2
= 1 and assume that

the values f(x
1
), f(x

2
) belong to the same set {0,1}. One wants to recognize

whether f is constant or not. The four combinations are:

To solve the problem with a classical computer one determines f(0) and f(1), that

is, a classical computer must be used twice.

It is also obvious that, if the classical computer were used only once, the outcome

would be insufficient to determine whether f is constant or not.

Note that the answer sought is just “the two values of f are equal”, or the “two

values of f are different”, i.e., (A , B) or (C , D).



EXAMPLE OF PARALLELISM (B)

Assume that we find a special computer, not able to determine f(0) and f(1)

independently; however it is able, using a single calculation, to provide the

answer “equal” or “different” with a 1/2 probability; the other half of the cases

correspond to a non-significant outcome, that indicates that the algorithm has

failed and that the computation must be repeated.

This conclusion seems unsatisfactory: after all, it is true that the standard

computer must perform two calculations instead of one, but, on the other hand,

the “special” computer provides a useful answer for only 50% of cases; due to

this, the time required in the average by the special computer is the same as that

of the standard one…



EXAMPLE OF PARALLELISM (C)

Consider, instead, the following example: one must perform a calculation that is

crucial with respect to some decision to be taken, like, e.g., investing in the stock

market on a day-by-day basis; the decision must be taken within 24 hours, and a

single calculation of f takes almost 24 hours, because n is very large. Obviously, a

standard computer would in this case be useless, whereas a “special” computer

would, at least, provide a sensible answer one day out of two.

The idea of evaluating a function as a whole connects this analysis to quantum

mechanics. In quantum mechanics we deal with functions (wave functions)

describing the state of a particle or of a system; their form is: 

� =  ���� + ���� + �	�	 + …

where w
k

are complex functions and c
k

complex coefficients.



PROPERTIES OF THE WAVE FUNCTION

In the linear combination above, functions w
k

are the (mutually-orthogonal)

eigenfunctions of an operator 	 associated to some dynamic variable A.

Assuming that ∥ � ∥ < ∞, it follows that |�
|� is proportional to the probability

that a measurement finds the particle or the system in state A
k
.

In computation it suffices to consider particles with two states:

� =  
 �� + � ��  ,                   |
|� + |�|� = ∥ � ∥�

Examples of the two states (indicated here with �� or ��) are the polarization

directions of a photon (vertical or horizontal polarization) and the orientations of

an electron spin (“spin up” or “spin down”).



QUBITS – QUANTUM GATES – QUANTUM CIRCUITS

A qubit is a quantum bit; it is similar to a classical bit in that it can take on 0 or 1

as states, but it differs from a bit in that it can also take on a continuous range of

values representing a superposition of states, i.e., � =  
 �� + � ��

A quantum logic gate (or quantum gate) is a physical object performing logical

operations on a qubit or on a small number of qubits. Connected quantum gates

form quantum circuits.

When the superposition of states is exploited to carry out calculations, it is also

called quantum parallelism.

An important point is that the equations of quantum mechanics are reversible

with respect to time. It follows that, when dealing with quantum gates, one must

consider the issue of logical reversibility and thermodynamic reversibility.



ENERGY CONSUMPTION OF GATES – LANDAUER BOUND

The classical gates consume energy. The Landauer Bound (L) or Landauer Limit is

the minimum energy consumed to erase s bits; it reads

L = s k
B

T log(2)

with T the temperature of the heat sink surrounding the device.

Note that the classical AND, OR, NAND, NOR gates, and their combinations, erase

bits because these gates are logically irreversible, that is, some of their output

values are such that the input values can not be reconstructed (*)).

One may think of realizing logically-reversible gates by preventing the bit erasure,

namely, by obtaining gates in which the number of output variables is equal to

that of the input variables, and reconstruction of inputs is possible.

(*) The NOT operator is logically reversible, but its standard implementation consumes energy.



LOGICALLY-REVERSIBLE GATES: CNOT AND CCNOT

Symbol and truth table of

the Controlled controlled

NOT (CCNOT) operator,

also called Toffoli gate.

Symbol and truth table of

the Controlled NOT (CNOT)

operator



LOGICALLY-REVERSIBLE GATES: FULL ADDER

Implementation of the full adder combining the CNOT and CCNOT operators.



HADAMARD GATE H

It converts each of the states of the basis into a linear combination of them,

according to the rules:

� �� =
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where ∥ �� ∥ = ∥ �� ∥ = � is assumed.

When paired with a Hadamard gate, the CCNOT (Toffoli) gate is universal.



QUANTUM GATES: PRACTICAL IMPLEMENTATION

It has been shown so far how, in theory:

o Logically-reversible and universal gates can be implemented.

o A suitable combination of such gates provides the full adder.

To proceed, the following steps are necessary:

• Associating to each gate one or more quantum-mechanical operators.

• Seek for physical systems that are described by the same operators.

• Use such systems to implement the quantum gates.

• Identify problems whose solution is made easier by quantum calculations.

In fact, different types of implementations have been investigated so far.

For each implementation, one must check the conditions that would make

thermodynamic reversibility possible.



THERMODYNAMIC REVERSIBILITY: EXAMPLE

• Consider an electron subjected to a potential

energy like the one shown in the figure.

• The electron is initially at E
1

(the minimum

energy possible in such a system).

• The system is kept at low temperature, so

that energies like E
2

- E
1

or larger are not

available.

• In these conditions, it is impossible for the

electron to exchange energy with the

environment.

• In quantum terms, the coherence of the wave

function is kept.

E
1

E
2



USEFUL REPRESENTATION OF THE QUBIT

whence

� ���� = � �� + � �� 
 �� , ∥ � ∥�=  �� + ��

due to the orthonormality of �� and�� . Then, one defines
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In the qubit expression� =  
 �� + � �� one lets


 = � ���, � = � ���, � = �− � , � ≤ � < 
�



USEFUL REPRESENTATION OF THE QUBIT (B)

In conclusion, the new representation of � =  
 �� + � �� becomes

|�⟩ = cos(� 
⁄ )  |�⟩+ sin � 
⁄   ��
  |�⟩

where   |�⟩ and   |�⟩ are given. It follows

that |�⟩ is a vector of unit length whose

orientation is defined by the � and

� angles. By changing such angles within

their full range, the tip of the |�⟩ vector

spans a sphere called Bloch sphere.

The qubit is much “richer” than  |�⟩ and  |�⟩

alone.
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DIVINCENZO CRITERIA (*)

The criteria are a formalization of what a quantum computer consists of.

1. A scalable physical system with i) qubits that are distinct from one another

and ii) the ability to count exactly how many qubits there are in it.

2. The ability to initialize the state of any qubit to a definite state in the

computational basis (in the examples above, the comp. basis is |�⟩, |�⟩).

3. The system’s qubits must hold their state: the system must be isolated from

the outside world, otherwise the qubits will decohere. In practice, the qubits

must hold their state long enough to apply the next operator with assurance

that the qubits have not changed state due to outside influences between

operations.

(*) [J. D. Hidary, Quantum Computing: An Applied Approach, Springer2019].



DIVINCENZO CRITERIA (B)

4. The system must be able to apply a sequence of unitary operators to the

qubit states. The system must also be able to apply a unitary operator to two

qubits at once: this entails entanglement between those qubits. Let

 =  !��"��� + !��"��� + !��"��� + !��"���

with ∥  ∥� = ∑ |!��|
�  ∥ "� ∥�  ∥ ��

�
���� ∥�.

If !��!�� = !��!�� then  = !��"� + !��"�  (�� + !���� !��) = " �⁄ ,

namely,  is separable, otherwise,   is entangled. Quoting DiVincenzo “...

entanglement between different parts of the quantum computer is good;

entanglement between the quantum computer and its environment is bad,

since it corresponds to decoherence.”



DIVINCENZO CRITERIA (C)

5. The system must be capable of making “strong” measurements of each qubit.

That is, the measuring technique in the system actually does measure the

state of the qubit for the property being measured and leaves the qubit in

that state. E. g., assume that index 1 (2) means “spin up (down)” and that

initially the total spin of a two-electron system equals zero. Thus,

 =  !��"��� + !��"���

Assume that Alice (sitting on Earth) measures " and finds spin up; this is

equivalent to forcing !�� = � and !�� = �. As a consequence, when Bob

(sitting on Anacreon) measures�, he must necessarily find spin down.
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