

Will doctors be Als with a human touch?

Stefano Diciotti - DEI, UNIBO

Aperitivo con AI – November 18, 2020

Prediction of diagnosis and prognosis in the single patient

Biomarker discovery

Potentials

Just some examples.

Precision Medicine

Garbage-in Garbage-out paradigm

f(garbage) = garbage

A system is only as good as the data you put in

Quality control: the Fridge Rule

"When in doubt, throw it out!"

Adapted from fMRI 4 newbies

Data Harmonization 700000 ROI Volume (cubic mm) Cerebral White Matter volume 300000 25 75 50 Aqe

Data augmentation

Nalepa et al., 2019

Data augmentation

Which is real?

Federated Learning

https://medium.com/disassembly/architecture-of-federated-learning-a36905c1d225

Toy Datasets

European Radiology https://doi.org/10.1007/s00330-020-07453-w

LETTER TO THE EDITOR

COVID-19, Al enthusiasts, and toy datasets: radiology without radiologists

H. R. Tizhoosh 1,2 D · Jennifer Fratesi 3

Received: 4 September 2020 / Revised: 23 September 2020 / Accepted: 2 November 2020 © The Author(s) 2020

Transfer Learning

Transfer Learning

Interpretability

machine intelligence

ARTICLES

https://doi.org/10.1038/s42256-020-0180-7

An interpretable mortality prediction model for COVID-19 patients

Li Yan¹³, Hai-Tao Zhang^{2,10}, Jorge Goncalves ^{3,4,10}, Yang Xiao², Maolin Wang², Yuqi Guo², Chuan Sun², Xiuchuan Tang⁵, Liang Jing¹, Mingyang Zhang², Xiang Huang², Ying Xiao², Haosen Cao², Yanyan Chen⁶, Tongxin Ren⁷, Fang Wang¹, Yaru Xiao¹, Sufang Huang¹, Xi Tan⁸, Niannian Huang⁸, Bo Jiao⁸, Cheng Cheng², Yong Zhang⁰, Ailin Luo⁸, Laurent Mombaerts ³, Junyang Jin⁷, Zhiguo Cao ², Shusheng Lio¹, Hui Xuo⁸ and Ye Yuan ²

Table 2 | Epidemiological, demographic, clinical, laboratory and mortality outcome information collected from medical records

Characteristics	Overall
Age, mean (s.d.) (years)	58.83 (16.46)
Gender, n (%)	
Male	224 (59.7)
Female	151 (40.3)
Epidemiological history, n (%)	
Wuhan residents	142 (37.9)
Contact with confirmed or suspected patients	2 (0.5)
Familial cluster	24 (6.4)
Health worker	7 (1.9)
Contact with Huanan Seafood Market	2 (0.5)
Undefined contact history	198 (52.8)
Symptoms on onset, n (%)	
Fever	187 (49.9)
Cough	52 (13.9)
FatIgue	14 (3.7)
Dyspnoea	8 (2.1)
Chest distress	7 (1.9)
Muscular soreness	2 (0.5)
Outcomes, n (%)	
Survival rate	201 (53.6)
Mortality rate	174 (46.4)
Laboratory test (patient's last measurements)	
LDH, median (range, Q1-Q3) (U1-1)	273.50 (199.00, 617.75)
Lymphocytes, median (range, Q1-Q3) (%)	14.35 (4.17, 27.53)
High-sensitivity C-reactive protein (mg i-1)	26.3 (2.0, 99.10)
Sodium median (range, Q1-Q3) (mmoi i-1)	140.7 (138.3, 143.3)
Chlorine median (range, Q1-Q3) (mmoi l-1)	102.3 (99.53, 105.58)
International normalized ratio (range, Q1–Q3)	1.10 (1.02, 1.30)
Eosinophiis, median (range, Q1-Q3) (x10°1-1)	0.02 (0.00, 0.09)
Eosinophils, median (range, Q1-Q3) (%)	0.25 (0.00, 1.50)
Monocytes, median (range, Q1-Q3) (%)	6.25 (2.98, 8.90)
Albumin, mean (s.d.) (gl ⁻¹)	32.67 (6.31)

Data were next lessed for normally. The Kalmagorov-Criminov less was used to test whether a beginning anything was some a particular distribution, bits in disregals—sample Kolmagorov-Shirinov lessed to check the homeolity of the letter. A Neet Neet of via c D. Co. and P. A. Ch.S. indicate that a commandation of the control of the c Table 3 | Performances of the Multi-tree XGBoost classification in discriminating between mortality outcomes using 100-round fivefold cross-validation using Supplementary algorithm 1

Features	AUC score for training sets (%)	AUC score for validation sets (%)
LDH	94.27±0.82	92.29 ± 2.62
LDH, lymphocyte	96.74±0.45	94.40 ± 2.31
LDH, lymphocyte, hs-CRP	97.84±0.37	95.06±2.21

Data presented as mean ± s.d.

Fig. 2 | A decision rule using three key features and their thresholds in absolute value. Num, the number of patients in a class; T, the number of correctly classified: F, the number of misclassified patients.

Interpretability

Radiology

Artificial Intelligence Distinguishes COVID-19 from Community Acquired Pneumonia on Chest CT

Lin Li*^{1a,1b}, Lixin Qin*², Zeguo Xu^{1a}, Youbing Yin³, Xin Wang³, Bin Kong³, Junjie Bai³, Yi Lu³, Zhenghan Fang³, Qi Song³, Kunlin Cao³, Daliang Liu⁴, Guisheng Wang⁵, Qizhong Xu⁵, Xisheng Fang¹a, Shiqin Zhang¹a, Juan Xia¹a, Jun Xia*⁶

Take home messages

Al for Health

Dedicated methods and data

Team work

Strongly multidisciplinary

Patient-centered Al

And also the human touch...

Thank You

Conta quello che è contabile, misura quello che è misurabile, e rendi misurabile quello che non lo è" —Galileo Galilei

University of Bologna

Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi" Viale del Risorgimento, 2 40136 – Bologna, Italy Alma Mater Research Institute for Human-Centered Artificial Intelligence

Thanks!

Do you have any questions? youremail@freepik.com +91 620 421 838 yourcompany.com

