# Predizione e contraddizione dalla biologia all'IA

PARTE SECONDA Intelligenza artificiale open-ended

Francesco Bianchini

Dipartimento di Filosofia e Comunicazione

francesco bianchini5@unil

Aperitivo con AI - 4 novembre 2020

#### Partiamo da una domanda

#### È possibile avere a che fare con un'IA «open-ended»?

- ➤ Open-ended: senza limiti, senza vincoli, aperta al cambiamento, indeterminata
- ➤ Problema della predizione

#### Previsione e filosofia della scienza

Il problema della predizione riguarda molti campi: probabilità, statistica, teoria dei giochi, causalità, modelli scientifici, approcci simulativi, ecc.

Filosofia della scienza generale: predizione & spiegazione

Q1

Una legge o una teoria scientifica devono permettere di spiegare e predire un fenomeno

Ma...
Spiegazione vs Predizione

#### Previsione e filosofia della scienza

Limiti della conoscenza scientifica dovuti alla predizione (Rescher 1984, 1999, 2012)

Asimmetria tra spiegazione e predizione da vari punti di vista

- > Logico: deduzione vs induzione; certezza vs probabilità
- ➤ Epistemologico: la spiegazione è una catena causale di fatti, la predizione non può escludere le alternative
- Ontologico: i fatti passati sono chiusi, gli eventi futuri sono aperti

La predizione è limitata rispetto alla spiegazione ed è soggetta a incertezza (razionalità limitata, inaccessibilità cognitiva, problema della rilevanza, ecc.)



## Quando usiamo la predizione in IA









TEORIA DELLA

COMPUTAZIONE (PER

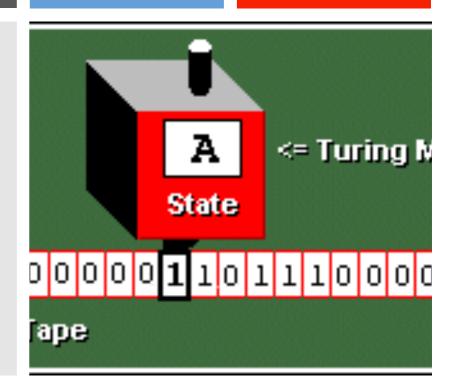
PREDIRE SE UN

ALGORITMO SI

FERMERÀ)

TEORIA DEI GIOCHI E
TEORIA DELLA
DECISIONE (PER PREDIRE
IL COMPORTAMENTO
DELL'AGENTE IN UNA
SITUAZIONE
INTERATTIVA O IN UNA
SITUAZIONE DI SCELTA)

APPROCCIO
SIMULATIVO E
METODO SINTETICO
(PER COSTRUIRE E
SFRUTTARE MODELLI E
ARTEFATTI SOFTWARE
E/O HARDWARE)


SVILUPPI TECNOLOGICI FUTURI E LORO IMPATTI

# Predizione e teoria della computazione

**Teoria della computazione**: i problemi decidibili sono quelli che sono computabili in un **numero finito di passi**, ma noi non sappiamo quanti passi e quali (→ «opacità algoritmica» generica)

I problemi risolvibili da una Macchina di Turing (Tesi di Church-Turing) necessitano di una quantità finita di memoria  $\rightarrow$  l'algoritmo arriva a una conclusione – il programma si ferma – ma più grande è la complessità dell'algoritmo e degli input, più difficile è sapere quando il programma si fermerà e i suoi risultati (problema della trattabilità)

Da un punto di vista empirico, la computazione è **oltre i limiti** della conoscenza umana (→ questione dell'osservatore)



#### Turing sulla predizione (Turing, 1950)

**Risposta** all'obiezione di Lady Lovelace: una macchina "has no pretensions to originate anything. It can do whatever we know how to order it to perform."

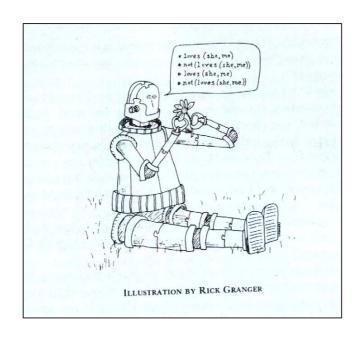
#### Turing:

"Machines take me by surprise with great frequency. This is largely because I do not do sufficient calculation to decide what to expect them to do, or rather because, although I do a calculation, I do it in a hurried, slipshod fashion, taking risks. [...] The view that machines cannot give rise to surprises is due, I believe, to a fallacy to which philosophers and mathematicians are particularly subject. This is the assumption that as soon as a fact is presented to a mind all consequences of that fact spring into the mind simultaneously with it. It is a very useful assumption under many circumstances, but one too easily forgets that it is false. A natural consequence of doing so is that one then assumes that there is no virtue in the mere working out of consequences from data and general principles."



### Algoritmi, IA e predizione

IA **enfatizza** questo aspetto per due ragioni


- 1. IA mira a produrre sistemi autonomi
- 2. Gli artefatti dell'IA interagiscono con contesti **open-ended**

Elaborare predizioni è molto difficile a causa della **indeterminatezza** (open-endedness) del **mondo reale** 

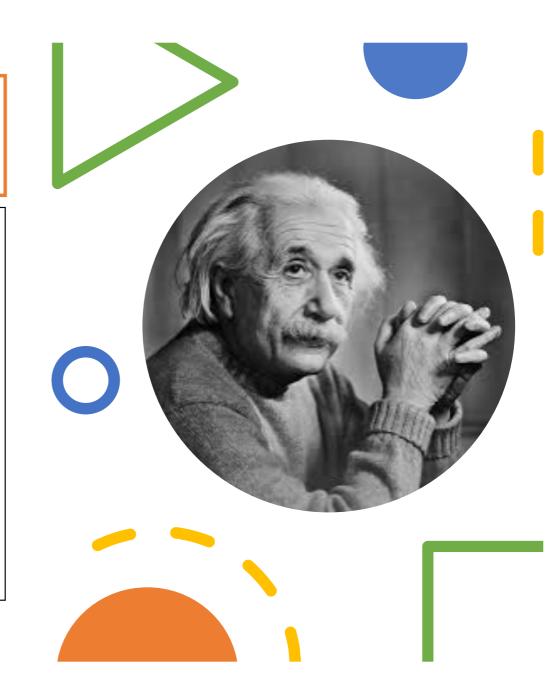
Sistemi IA che si muovono nel mondo reale (ambienti fisici, sociali, di dati, ecc.) → in larga parte bio-ispirati

## La logica dell'IA

Logica come base di partenza per l'IA



Il mondo reale è più complesso della logica


#### IA e cognizione

#### Conversazione col cervello di Einstein

[Hofstadter, Dennett, 1981]

Achille: [...] una mente nella sua interazione con il mondo esterno durante un certo intervallo di tempo, si modifica in un modo che non era inizialmente inerente alla sua struttura fisica.

Tartaruga: Osservazione valida, la sua. Una mente, o un cervello, interagisce col mondo ed è quindi soggetto a cambiamenti che non si possono prevedere in base alla sola conoscenza della struttura del cervello.



## IA e biologia



«Preludio e... mirmecofuga», in *Gödel, Escher, Bach*, Douglas R. Hofstadter, 1979.

- ☐ Sistemi biologici
- ☐ Sistemi complessi
- ☐ Sistemi autonomi
- ☐ Sistemi che si autoorganizzano
- ☐ Sistemi in grado di adattarsi al mondo esterno (contesto open-ended)

Rapporto fra olismo, emergentismo e riduzionismo: questione dell'osservatore



Intelligenza artificiale bio-ispirata

[Floreano, Mattiussi, 2008]

- ➤ Sistemi evolutivi
- ➤ Sistemi cellulari
- Sistemi neurali
- ➤ Sistemi di sviluppo
- ➤ Sistemi immunitari
- ➤ Sistemi comportamentali
- ➤ Sistemi collettivi (swarm)

Euristiche di ispirazione da differenti sistemi biologici

BIOLOGY, CONTROL, AND ARTIFICIAL INTELLIGENCE

ADAPTATION

IN

NATURAL

AND

ARTIFICIAL

SYSTEMS

JOHN H. HOLLAND

## IA, biologia e predizione

Sistemi complessi adattivi (in due sensi)

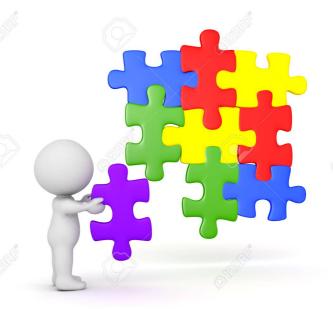
- 1. Conosciamo le parti ma non il comportamento complessivo
- 2. Conosciamo il punto di partenza, ma non il punto di arrivo, né l'evoluzione

Complessità algoritmica → irriducibilità computazionale

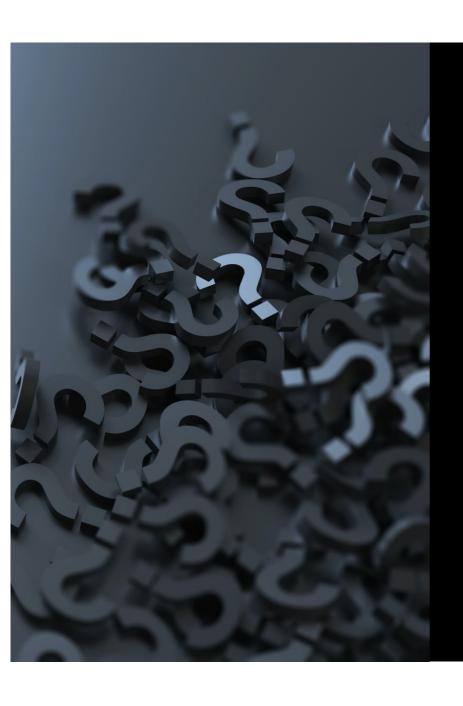
# Nessuna scorciatoia!

 Irriducibilità computazionale: per alcuni sistemi fisici è possibile simulare ogni passo dell'evoluzione del comportamento del sistema, ma non è possibile predire un risultato di tale evoluzione senza lasciare che il sistema compia ogni passaggio evolutivo.

#### Non ci sono scorciatoie per predire il comportamento del sistema!


 Tipico dei fenomeni emergenti, come i fenomeni biologici e le loro simulazioni (evolutive e adattive) → esempio degli automi cellulari

#### IA, biologia e predizione


Mettiamo insieme i pezzi...

IA con euristiche bio-ispirate (in senso ampio) è costitutivamente impredicibile.

- a) Il sistema deve evolvere verso la soluzione (non si vuole conoscere in anticipo come)
- b) Il sistema deve adattarsi al contesto openended (non si può conoscere in anticipo come)



- a) e b) sono due casi di libertà nel senso di autonomia.
- → conoscere in anticipo il comportamento del sistema ne mina l'efficacia



## E la spiegazione?

#### Due sensi della spiegazione

1. Possiamo spiegare a ritroso e non in avanti (irriducibilità computazionale) → senso epistemologico di spiegazione

#### RICOSTRUIRE TUTTI I PASSI COMPIUTI

2. Ma anche potendo spiegare in questo senso, in alcuni casi la spiegazione non è completa, perché i passi seppure conosciuti non sono interpretabili (problema dell'explainable AI)

#### Predizione e spiegazione

Predizione Spiegazione

- ✓ Impredicibilità costitutiva → Ciò che perdiamo in spiegazione guadagniamo in efficienza
- Risultato emergente è comunque un risultato
- **Ipotesi** per ridurre il problema dell'*Explanable AI* → aumentare la sovrapposizione fra spiegazione e predizione

#### Conclusioni

- Impredicibilità costitutiva dei sistemi di IA (specialmente bio-ispirati)
- Vantaggi: sistemi autonomi, liberi, adattivi, molto più vicini alla cognizione umana (non monotonicità, contraddizione, individualità)
- Svantaggi: Quanto spiegabili? Quanto controllabili?
- **Paradosso** (dal punto di vista cognitivo): modelli che simulano ma non spiegano

## Un'ultima considerazione (provocazione?) sull'intelligenza (artificiale)

#### Dibattito sulla superintelligenza e/o IA generale

Un sistema adattivo, impredicibile e autonomo potrebbe diventare un'intelligenza con potenzialità, obiettivi, motivazioni e metodi molto lontani dalla comprensione umana?

Esiste il rischio di una IA o di forme di IA (non per forza generali) che non comprendiamo (controlliamo, prediciamo, spieghiamo) che invece possano fare l'inverso (comprendere, predire, controllare **noi**)?

