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Machine Learning nella scoperta del bosone di Higgs
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Contributo alla ricerca del 
bosone di Higgs (2012)

Scoperta attesa - senza ML -
intorno al 2015/16 (!)

E.g. analisi dell’esperimento CMS nel canale
H→ ɣ ɣ fortemente dipendente da algoritmi di 
ML tradizionali, come boosted decision trees, 
nel miglioramento delle risoluzioni sperimentali e 
nella selezione degli eventi



IL	CERN	di	Ginevra
In order to create high energy densities we accelerate particles in 
opposite directions and make them collide one against the other

The CERN LHC 
accelerates protons. It 
has 27 km of 
circumference and is 
located in a tunnel 
about 100 m 
underground in the 
Geneva area
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Particle	detectors
Around collision points we have built particle detectors 
that can “see” the particle produced in the proton 
collision so that we can 
understand what 
happened.

Detectors have  
about 100 million 
channels that are 
acquired at each 
collision
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Collision	events
We call “event” a single crossing of the proton bunches in 
the detector area.
For each event we 
reconstruct the 
particles produced 
in the collisions.
There are 40 
millions crossings 
per second
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Some	reference	numbers
• 600 million collisions every second 

• Only 1 in a million collisions is of interest

• Fast electronic preselection passes 1 out of 10 000 events 

and stores them on computer memory

• 100 GB/s transferred to the experiment computing farm

• 15 000 processor cores select 1 out of 100 of the 

remaining events
7
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Pile-up
If you’re wondering why 

a bunch crossing rate of 

40 MHz produces 600 

collisions per second:

Every bunch crossing 

(event)  there are on 

average 15 p-p 

collisions (AKA pileup)

Pileup is increased in 2017 to 50 and eventually to more than 150 

in HL-LHC

10
/0

2/
20

20
A.

 Z
oc

co
li 

Sc
uo

la
 F.

 B
on

au
di

 -
Co

gn
e

9



…Computing	infrastructure
Global resources for 2020 are:

• 1.000.000 processor cores

• 500.000 TB disk

• 590.000 TB tape

• Dedicated network connections (from multiples 

of 10 Gb/s to multiples of 100 Gb/s)

…and more available in collaborating institutes

More than 180 data centres in over 35 

countries

More than 8000 analysts all over the 

world
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LHC	Real	data

LHC collisions Decay of unstable 
particles

Detector electronics

Trigger

Analysis

Reconstruction
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LHC	Simulation
Not just real data form detectors!

Since it is not possible to use analytical solutions of physic 

processes going from the proton interactions to the final 

state particles, we use simulations based on Monte Carlo 

techniques

Events are generated according to theoretical models and 

then simulated in order to reproduce the detector behaviour 

and then treated in the same way of the real data

The simulated data sample is 1 to 2 times the real data 

sample

12



LHC	Simulated	data

Theoretical model
Simulation of decays of 

unstable particles

Simulation of 
interactions particle-

detector

Simulation of detector 
electronics

Trigger

Recontruction

Analysis
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AI in Fisica delle Alte Energie (HEP)
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Fino a pochi anni fa: ML “tradizionale”..

Use of field-specific knowledge for feature engineering
i.e. use physicist-designed high-level features as input to shallow algorithms

Data is organized differently from other typical ML tasks
Our data is very sparse, already zero suppressed, 

Mapping our tasks to standard technologies often implies information loss

We try to adapt standard techniques to out use cases (recasting)



Examples of ML in HEP

• Minimization algorithms reimplemented with TensorFlow
• Convolutional or Recurrent Neural Networks used for jet tagging
à Example 1

• Deep Neural Networks used for generic Signal/background 
discrimination
• e.g. glitches detection in gravitational wave searches

• Generative Adversarial Networks used for event simulation
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Particle properties: energy resolution

Using ML to improve the determination of particle properties is now 
commonplace in all LHC experiments

• E.g. energy deposited in calorimeters is recorded by many sensors, which are 
clustered to reconstruct the original particle energy. CMS is training BDTs to learn 
corrections using all information available in the various calorimeter sensors - thus 
resulting in a sizeable improvement in resolution
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Improvements to the Z→e+e- energy 
scale and resolution from the 
incorporation of more sophisticated 
clustering and cluster correction 
algorithms  (energy sum  over  the  seed  
5x5  crystal matrix,  bremsstrahlung  
recovery  using  supercluster, inclusion of 
pre-shower energy, energy correction 
using a multivariate algorithm)

betterbetter

[ 2015 ECAL detector performance plots, CMS-DP-2015-057. Copyright CERN, reused with permission ]

https://cds.cern.ch/record/2114735


Discovery of the Higgs boson

ML played a key role in the discovery of the Higgs boson, especially in 
the diphoton analysis by CMS where ML (used to improve the 
resolution and to select/categorize events) increased the sensitivity by 
roughly the equivalent of collecting ~50% more data. 
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We were not supposed to discover the Higgs boson as early as 2012
• Given how machine progressed, we expected discovery by end 2015 / mid 2016

We made it earlier thanks (also) to ML



Machine Learning nella scoperta del bosone di Higgs
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Contributo alla ricerca del 
bosone di Higgs (2012)

Scoperta attesa - senza ML -
intorno al 2015/16 (!)

E.g. analisi dell’esperimento CMS nel canale H→ ɣ
ɣ fortemente dipendente da algoritmi di ML 
tradizionali, come boosted decision trees, nel
miglioramento delle risoluzioni sperimentali e 
nella selezione degli eventi



High-precision tests of the SM

CMS and LHCb were the first to find evidence for the B0s→𝜇+𝜇- decay with 
a combined analysis (as rare as ~ 1 / 300 billion pp collisions..)

• BDTs used to reduce the dimensionality of the feature space - excluding the mass - to 1 
dimension, then an analysis was performed of the mass spectra across bins of BDT 
response

• decay rate observed is consistent with SM prediction with a precision of ~25%, placing 
stringent constraints on many proposed extensions to the SM

• To obtain the same sensitivity without ML by LHCb as a single experiment would have 
required ~4x more data. Just one of many examples of high-precision tests of the SM at 
the LHC where ML can dramatically increase the power of the measurement
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Mass distribution of the selected 
B0 → μ+μ− candidates with BDT > 0.5. 

[arXiv: 1703.05747]
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Fino a pochi anni fa: ML “tradizionale”..
use of field-specific knowledge for feature engineering
i.e. use physicist-designed high-level features as input to shallow algorithms

Da qualche anno: Reti neurali (con molteplici architetture)

use of  full high-dimensional feature space to train cutting-edge ML algorithms (e.g. 
DNNs). As in computer vision and NLP, growing effort in HEP too to skip the feature-
engineering step



Simulation
Physics-based	full	simulation	modelling	in	HEP	(with	GEANT	4	as	the	state	of	the	art)	
is	very	computationally	demanding

• e.g.	for	LHC,	the	large	samples	to	be	generated	for	future	experimental	runs	and	the	increase	in	
luminosity	will	exacerbate	the	problem,	prohibitive	also	for	GEANT	

This	already	sparked	the	development	of	approximate,	Fast	Simulation solutions	to	
mitigate	this	computational	complexity	- especially	relevant	in	calorimeter	showers	
simulations
Promising	alternatives	for	Fast	Simulation	may	be	built	on	recent	progress	in	high	
fidelity	fast	generative	models

• e.g.	Generative	Adversarial Networks	(GANs)	and	Variational	AutoEncoders (VAEs)

• ability	to	sample	high	dimensional	feature	distributions	by	learning	from	existing	data	samples

A	simplified	first	attempt	at	using	such	techniques	in	simulation	saw	orders	of	
magnitude	increase	in	speed	over	existing	Fast	Simulation	techniques,	of	which	all 
HEP experimentswould	largely	benefit

• not	yet	reached	the	required	accuracy,	though

Perhaps	more	towards	>2020,	but	promising.

D.	Bonacorsi21SC	- AA	2019/20



Trigger

Crucial trade-off in algorithm complexity and performance 
under strict inference time constraints
E.g. ATLAS/CMS each only keep about 1 in every 100 000 
events, and yet their data samples are each still about 20 
PB/yr

• ML algorithms have already been used very successfully for rapid event 
characterisation

• adoption depth vary across experiments, but the increasing event complexity 
at HL-LHC will require more sophisticated ML solutions and its expansion to 
more trigger levels

A critical part of this work will be to understand which ML 
techniques allow us to maximally exploit future computing 
architectures

D. Bonacorsi
2
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Tracking

Pattern recognition has always been a computationally challenging step
• e.g. the HL-LHC environment makes it an extremely challenging task

Adequate ML techniques may provide a solution that scales linearly with 
LHC intensity.
Several efforts in the HEP community have started to investigate 
sophisticated ML algorithms for track pattern recognition on many-core 
processors. 

D. Bonacorsi
2
3SC - AA 2019/20



Vertices, jets reconstruction

Graph networks are probably a game changer for us
Vertexing

Input for vertexing is very nicely represented with a graph
(e.g. each node is a track and each edge has properties
such as track to track distance)

Jet clustering and tagging
Rather than sequential processing we could process the 
particle graph (each particle is connected with neighbor
particles with some QCD motivated metric) and have hard 
process Feynman diagram (a graph!) as the target
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CNN (Convolutional	Neural	Networks)
(reti neurali convoluzionali)

Metodo: livelli di convoluzione che estraggono (filtri) caratteristiche delle immagini

Industria: 
Largo utilizzo in “computer vision"

Fisica delle Alte Energie all’INFN: 
3D imaging nei rivelatori,
classificazione di eventi, ..



Rilevazione di aeroporti da immagini satellitari (metodo: 
CNN)

Rilevazione di neutrini su eventi di cosmic 
background (metodo: CNN)

Somiglianze notevoli tra applicazioni diverse (Fisica e non)



RNN (Recurrent	Neural	Networks)
(reti neurali ricorrenti)

Metodo: aggiunta di connessioni di feedback, più istanti temporali considerati insieme

Industria: 
gestione di “time series”
(audio, video, natural language processing)

Fisica delle Alte Energie all’INFN: 
classificatori capaci di processare segnali complessi, o 
input di lunghezza variabile nel tempo (tracce, 
particelle, ..)



Metodo: “training” di 2 reti neurali in competizione, per imparare come generare nuovi dati con la stessa distribuzione 
di quelli usati in fase di training

Industria: 
Image editing, Data generation, Security, .. Fisica delle Alte Energie all’INFN: Generare la risposta dei 

rivelatori (promettente alternativa ai tradizionali 
programmi di simulazione)

GAN (Generative	Adversarial	Networks)
(reti generative antagoniste)



Metodo: comprimere i dati (“encoder”) in uno spazio di variabili “latenti” e ricostruirlo (“decoder") generando così 
nuovi dati (NB: è unsupervised ML)

Industria: 
Riduzione della dimensionalità, denoising..

Fisica delle Alte Energie all’INFN: Isolare potenziale nuova 
fisica come eventi “outlier” di distribuzioni note

(V)AE (Variational	Autoencoders)



Grazie !

30



31

(quick) reading material

!X D. Bonacorsi

https://www.nature.com/articles/s41586-018-0361-2


